PRIMJENA SOFTVERSKOG PAKETA AUTOPIPE ZA PRORAČUN PAROVODA VISOKOG PRITISKA

APPLICATION SOFTWARE PACKAGE AUTOPIPE FOR CALCULATION OF HIGH PRESSURE STEAM LINE

Red. Prof. Dr. Dušan Vukojević, Mašinski fakultet Zenica

Mr. Milenko Rimac, Institut Kemal Kapetanović Zenica Dino Tica, dipl. ing. mašinstva, JP Elektroprivreda BiH Sarajevo Podružnica Termoelektrana "Kakanj"

> Van. Prof. Dr. Dževad Zečić, Ekonomski fakultet Zenica

REZIME

Parovod svježe pare bloka 5 u Termoelektrani "Kakanj" je u eksploataciji već 186.953 radnih sati, usprkos tome što je projektovani radni vijek ovog parovoda 100.000 radnih sati. Postavlja se pitanje kako procijeniti preostali vijek trajanja ovog parovoda. U radu je dat prikaz mogućnosti primjene softverskog paketa AUTOPIPE za proračun i procjenu preostalog vijeka trajanja parovoda visokog pritiska.Dat je kritički osvrt na rezultate proračuna.

Ključne riječi: Proračun parovoda

SUMMARY

Steam pipng of superheated steam of the unit 5 in the Thermal power plant "Kakanj" is in operation already 186.953 working hours, despite the fact that designed time life of this steam piping is 100.000 working hours. The problem is how to estimate remaining lifetime of this piping. This paper shows applicability of software package AUTOPIPE for calculation and estimation of remaining lifetime of steam piping of high pressure. Results of calculations were reviewed with respect to its applicability in specific case.

Keywords: Steam piping calculation

1. UVOD

Parovodi visokog pritiska su kritični dijelovi postrojenja u termoelektrana, koje imaju značajan uticaj na pouzdanost i raspoloživost elektrane, kao i na sigurnost u eksploataciji cjelokupnog sistema. U analizama parovoda (pri projektovanju, tokom eksploatacije i održavanja, pri procjeni životnog vijeka) treba imati u vidu niz dodatnih uticaja, koje se odnose direktno na radne parametre pare, pritisak i temperaturu. Parovodi visokog pritiska bloka 5. u TE "Kakanj" sastoje se od dvije grane (parovod svježe pare – lijevo i parovod svježe pare – desno), slika 1. Osnovna uloga navedenog parovoda je transport svježe pregrijane pare od kotla prema VT dijelu turbine. Parovod je izrađen kao bešavna debelostjena cijev, promjera Ø245 mm i debljine stijenke od 28 mm. Parovod je kruto pričvrščen na izlaz pare iz kotla, te čvrstom vezom na komoru BZ ventila na ulazu u VT dio turbine. Isti je pričvršćen za konstrukciju zgrade preko elastičnih oslonaca

(opružnih sklopova), te jednoga pomičnog oslonca na koti +7 m (pomak okomito na cijev). Uloga pomičnih oslonaca je mogućnost dilatacije parovoda. Parovod je izoliran mineralnom vunom, te obložen limovima. Pored ravnih dijelova parovoda, postoje koljena radijusa zakrivljenja 1100 mm, te određeni broj T-komada, pregradni ventili iza odvojaka parovoda prema By-passima. te ventili By-passa. Na konkretnom modelu bloka 5. u TE "Kakanj" već dugi niz godina je u upotrebi parovod visokog pritiska izrađen od V-Mo čelika sa oznakom ČSN 15123.1. Na osnovu preporuke proizvođača opreme i samoga projektanta dopušteni broj radnih sati je 100000 h. Prema našim saznanjima ovaj parovod je znatno premašio zacrtana ograničenja u eksploataciji, što znači da postojeće preporuke nisu precizno projektovale radni vijek. Razlog ovome može biti da je eksploatacioni režim rada parovoda vođen pravilno i stručno. Predmet analize u okviru ovoga rada je parovod svježe za koji je provedena procjena preostalog životnog vijeka. Za proračun stacionarnih naprezanja uslijed pritiska pare, vlastite težine i toplinskih naprezanja zbog toplinskih dilatacija, proveden je numeričkim programom za proračun BENTLEY AutoPIPE+9, a koji se temelje na Metodi konačnih elemenata. Konačna prociena preostalog životnog vijeka temelji se na pouzdanom poznavanju mehaničkih karakteristika materijala, opreme i stvarnih režima rada postrojenja u proteklom periodu.

Slika 1.Parovod visokog pritiska

Za modeliranje parovoda u ovome programu potrebno je poznavati slijedeće:

- Geometriju poprečnog presjeka parovoda,
- Koordinate (relativne ili apsolutne) karakterističnih tački parovoda (početak i kraj cijevi, mjesta zavješenja parovoda, položaj koljena, ventila, priključaka i drugo),
- Karakteristike zavješenja: tip zavješenja, konstanta opruge zavješenja, sila u zavješenju u hladnom (ugradbenom) stanju,
- Karakteristika materijala u ovisnosti o radnoj temperaturi cijevi (modul elastičnosti, koeficijent toplinske dilatacije, specifična gustoća materijala, vlačna čvrstoća),
- Opterećenje parovoda (unutrašnji pritisak, težina, početna temperatura, radna temperatura).

2. PAROVOD SVJEŽE PARE

2.1. Modeliranje parovoda svježe pare

Na slici 2. date su dimenzije poprečnog presjeka parovoda i one iznose:

- Spoljni promjer parovoda --
 - Debljina stijenke parovoda t = 28 mm.
- Unutrašnji promjer parovoda _

 $d_v = 245 \text{ mm}.$

 $d_{u} = 189 \text{ mm}.$

Slika 2. Dimenzije poprečnog presjeka parovoda

2.2. Koordinate karakterističnih točaka modela parovoda

U tabeli 1. dat je djelimični prikaz koordinata karakterističnih točaka parovoda (relativne i apsolutne koordinate.

					Relativn	e koordin	ate	Apsolutne koordinate			
Od	Do	Kompo.	Dužina	Seg	DX	DY	DZ	X	Y	Ζ	
tačke	tačke		mm		mm	mm	mm	mm	mm	mm	
Origin	A00	Tačka		Α							
A00	A01	Pravac	3600	Α		-3600			-3600		
A01	A02	Pravac	3600	Α		-3600			-7200		
A02	A03	Pravac	3600	Α		-3600			-10800		
A03	A04	Pravac	3750	Α		-3750			-14550		
A04	A05	Koljeno	5300	Α		-5300			-19850		
A05	A06	Pravac	2000	А	2000			2000	-19850		

Tabela I. Koordinate karakterističnih tačaka parovoda svieže pare

2.3. Karakteristike zavješenja parovoda svježe pare

U tabeli 2. date su djelimično karakteristike zavješenja parovoda; tip zavješenja, konstanta krutosti opruge zavješenja, te sila u zavješenju u hladnom (ugradbenom) stanju.

Tabela 2. Karakteristike zavješenja parovoda svježe pare

Tačka	Vrsta oslonca	Konstanta krutosti opruge u N/mm	Sila u hladnom stanju u N	Broj opruga u kom	Pomjeranje gore u mm
A01	OPRUGA	25	7500	2	
A02	OPRUGA	25	6800	2	
A03	OPRUGA	25	12600	2	
A04	OPRUGA	25	12600	2	
A06	OPRUGA	64	16000	1	

2.4. Rezultati provedenih proračuna na parovodu svježe pare

2.4.1. Rezultati deformacija parovoda svježe pare

U tabeli 3. dat je prikaz rezultata izračunatih deformacija na parovodu svježe pare pod djelovanjem vlastite težine i temperature 545°C. U tabeli je dat skraćeni prikaz rezultata.

•			DY							
Seg	Point	Combination	DX	DY	DZ	DR	RX	Rĭ	RZ	RR
			mm	mm	mm	mm	dea	dea	dea	dea
A	A00	GT1	0.00	0.00	-50.00	50.00	0.00	-0.00	0.00	0.00
A	A01	GT1	3.66	-26.93	-52.80	59.38	0.11	-0.21	0.11	0.26
A	A02	GT1	13.96	-53.86	-64.91	85.49	0.29	-0.42	0.21	0.55
A	A03	GT1	29.89	-80.79	-90.64	125.04	0.54	-0.63	0.29	0.88
A	A04	GT1	51.39	-108.84	-135.27	181.07	0.83	-0.85	0.36	1.24
Α	A05 N	GT1	80.03	-140.26	-202.89	259.31	0.95	-1.09	0.42	1.50
A	A05 F	GT1	96.37	-140.30	-199.17	261.99	0.96	-1.17	0.43	1.58
A	A06	GT1	103.10	-133.48	-180.59	247.10	0.97	-1.19	0.44	1.60
A	A07	GT1	136.77	-99.21	-83.97	188.68	1.01	-1.25	0.43	1.66
Α	A08 N	GT1	147.99	-88.19	-51.66	179.86	1.02	-1.22	0.41	1.64
A	A08 F	GT1	178.85	-60.62	-36.89	192.42	1.04	-1.15	0.38	1.59
A	A09	GT1	298.47	66.70	-89.96	318.79	1.00	-0.77	0.25	1.28
A	A10	GT1	356.52	157.17	-131.09	411.09	0.87	-0.43	0.14	0.99
A	A11	GT1	380.75	237.93	-175.98	482.24	0.65	-0.02	0.03	0.65
A	A12	GT1	380.51	248.90	-183.47	490.30	0.61	0.05	0.01	0.61
A	A13	GT1	378.99	259.03	-190.95	497.19	0.56	0.12	-0.01	0.57
A	A14	GT1	374.26	272.57	-202.18	505.22	0.48	0.24	-0.04	0.53
Α	A15 N	GT1	363.95	286.64	-216.40	511.32	0.37	0.39	-0.07	0.54
A	A15 F	GT1	347.36	294.84	-215.54	504.04	0.25	0.52	-0.11	0.59
A	A16	GT1	331.65	299.30	-193.80	486.96	0.08	0.65	-0.13	0.66
A	A17	GT1	290.51	312.16	-122.31	443.62	-0.37	0.77	-0.12	0.87
A	A18 N	GT1	280.78	314.85	-105.23	434.79	-0.47	0.74	-0.11	0.89
A	A18 F	GT1	270.68	308.61	-80,40	418.30	-0.60	0.73	-0.09	0.95
A	A19	GT1	269.37	301.88	-70.42	410.67	-0.66	0.73	-0.08	0.99
A	A20	GT1	265.05	268 22	-5 79	377 12	-0.96	0.73	-0.04	1 21

Tabela 3. Deformacije parovoda svježe pare djelovanjem vlastite težine i temperature 545°

2.4.2. Rezultati sila i momenata parovoda svježe pare

U tabeli 4. dat je prikaz rezultata izračunatih sila i momenata na parovodu svježe pare pod djelovanjem vlastite težine i temperature 545°C. U tabeli je dat skraćeni prikaz rezultata.

Seg	Point	Combination	FX	FY	FZ	FR	MX	MY	MZ	MR
			N	N	N	N	N-m	N-m	N-m	N-m
Α	A00	GT1	-525.45	-1116.93	5195.76	5340.37	-11811.15	18972.33	-14358.79	26563.65
Α	A01 -	GT1	-525.45	-1116.93	-11442.12	11508.51	-23054.61	18972.33	-12467.15	32355.75
Α	A01 +	GT1	-525.45	-1116.93	6198.31	6320.02	-23054.61	18972.33	-12467.15	32355.75
Α	A02 -	GT1	-525.45	-1116.93	-10439.57	10512.29	-30688.90	18972.33	-10575.51	37597.86
Α	A02 +	GT1	-525.45	-1116.93	6406.27	6524.10	-30688.90	18972.33	-10575.51	37597.86
Α	A03 -	GT1	-525.45	-1116.93	-10231.61	10305.80	-37574.53	18972.33	-8683.88	42979.11
Α	A03 +	GT1	-525.45	-1116.93	8300.88	8392.16	-37574.53	18972.33	-8683.88	42979.11
Α	A04 -	GT1	-525.45	-1116.93	-9030.25	9114.22	-38942.08	18972.33	-6713.42	43834.98
Α	A04 +	GT1	-525.45	-1116.93	19134.43	19174.20	-38942.08	18972.33	-6713.42	43834.98
Α	A05 N	GT1	-525.45	-1116.93	-276.44	1264.93	659.78	18972.33	-4506.51	19511.36
Α	A05 F	GT1	-525.45	-1116.93	-8262.05	8353.74	-2836.30	13076.06	-2699.89	13649.81
Α	A06 -	GT1	-525.45	-1116.93	-12421.52	12482.70	-2836.30	3768.44	-1694.64	5011.75
Α	A06 +	GT1	-525.45	-1116.93	7738.03	7835.86	-2836.30	3768.44	-1694.64	5011.75
Α	A07 -	GT1	-525.45	-1116.93	-13059.32	13117.53	-2836.30	-8204.49	3331.57	9298.26
Α	A07 +	GT1	-525.45	-1116.93	1515.89	1954.89	-2836.30	-8204.49	3331.57	9298.26
Α	A08 N	GT1	-525.45	-1116.93	-5416.56	5555.42	-2836.30	-11129.99	5006.97	12529.60
Α	A08 F	GT1	-525.45	-1116.93	-13402.17	13458.89	-1607.67	-20858.21	6235.60	21829.62
Α	A09 -	GT1	-525.45	-1116.93	-46215.77	46232.25	6322.57	-24588.94	6235.60	26143.33
Α	A09 +	GT1	-525.45	-1116.93	4700.47	4859.84	6322.57	-24588.94	6235.60	26143.33
Α	A10 -	GT1	-525.45	-1116.93	-20718.52	20755.26	12465.71	-27478.94	6235.60	30811.83
Α	A10 +	GT1	-525.45	-1116.93	15063.76	15114.25	12465.71	-27478.94	6235.60	30811.83
Α	A11 -	GT1	-525.45	-1116.93	-12666.05	12726.05	19167.32	-30631.67	6235.60	36668.35
Α	A11 +	GT1	-525.45	-1116.93	28862.75	28889.13	19167.32	-30631.67	6235.60	36668.35
Α	A12	GT1	-525.45	-1116.93	24241.12	24272.52	20284.26	-31157.12	6235.60	37697.48
Α	A13	GT1	-525.45	-1116.93	19619.49	19658.28	21401.19	-31682.58	6235.60	38738.61
Α	A14	GT1	-525.45	-1116.93	12687.04	12746.94	23076.60	-32470.76	6235.60	40320.74
Α	A15 N	GT1	-525.45	-1116.93	3905.92	4096.32	25198.78	-33469.12	6235.60	42356.14
Α	A15 F	GT1	-525.45	-1116.93	-4079.69	4262.33	26427.40	-32751.46	5006.97	42380.84
А	A16 -	GT1	-525.45	-1116.93	-13785.12	13840.27	26427.40	-13993.38	2661.40	30021.75
Α	A16 +	GT1	-525.45	-1116.93	6919.74	7028.97	26427.40	-13993.38	2661.40	30021.75

Tabela 4. Sile i momenti u parovodu svježe pare pod djelovanjem vlastite težine i temperature 545 °C

2.4.3. Rezultati naprezanja parovoda svježe pare

U tabeli 5. dat je prikaz rezultata naprezanja na parovodu svježe pare pod djelovanjem vlastite težine, maksimalnog pritiska i temperature 545°C, te kombinacija različitih opterećenja. U tabeli je dat skraćeni prikaz rezultata.

Seg	Point	Combination	Category	Stress	Allowable	Ratio	Pressure	Bending	Ma (Sus)	Mb (Occ)	Mc (Exp)	SIF	Equation
				N/mm2	N/mm2		N/mm2	N/mm2	N-m	N-m	N-m		
Α		Max P	Ноор	66.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Α		GR + Max P	Sustain	76.86	0.00	0.00	30.78	46.09	42974.34	0.00	0.00	1.00	2-1
Α	A00 A T S	Amb to T1	Expansion	37.91	171.99	0.22	0.00	37.91	0.00	0.00	35349.55	1.00	4-1
Α		TR:AMB-T1	Expansion	37.91	171.99	0.22	0.00	37.91	0.00	0.00	35349.55	1.00	4-1
Α		Sus.+T1	Creep Rupt	89.50	72.85	1.23	30.78	58.72	0.00	0.00	0.00	1.00	5-1
Α		Sus.+MaxTR	Creep Rupt	76.86	0.00	0.00	30.78	46.09	0.00	0.00	0.00	1.00	5-1
Α		Max P	Ноор	66.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Α		GR + Max P	Sustain	67.91	0.00	0.00	30.78	37.14	34628.74	0.00	0.00	1.00	2-1
Α	A01	Amb to T1	Expansion	20.98	171.99	0.12	0.00	20.98	0.00	0.00	19567.58	1.00	4-1
Α	AUT -	TR:AMB-T1	Expansion	20.98	171.99	0.12	0.00	20.98	0.00	0.00	19567.58	1.00	4-1
Α		Sus.+T1	Creep Rupt	74.91	72.85	1.03	30.78	44.13	0.00	0.00	0.00	1.00	5-1
Α		Sus.+MaxTR	Creep Rupt	67.91	0.00	0.00	30.78	37.14	0.00	0.00	0.00	1.00	5-1
Α		Max P	Ноор	66.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Α	A01 ±	GR + Max P	Sustain	67.91	0.00	0.00	30.78	37.14	34628.74	0.00	0.00	1.00	2-1
Α	AUT	Amb to T1	Expansion	20.98	157.36	0.13	0.00	20.98	0.00	0.00	19567.58	1.00	4-1
Α		TR:AMB-T1	Expansion	20.98	157.36	0.13	0.00	20.98	0.00	0.00	19567.58	1.00	4-1
Α		Max P	Ноор	66.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Α	A02	GR + Max P	Sustain	63.46	0.00	0.00	30.78	32.68	30474.48	0.00	0.00	1.00	2-1
Α	AUZ	Amb to T1	Expansion	16.08	157.36	0.10	0.00	16.08	0.00	0.00	14996.69	1.00	4-1
Α		TR:AMB-T1	Expansion	16.08	157.36	0.10	0.00	16.08	0.00	0.00	14996.69	1.00	4-1
Α		Max P	Ноор	66.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Α	402	GR + Max P	Sustain	64.01	0.00	0.00	30.78	33.23	30987.86	0.00	0.00	1.00	2-1
Α	AUS	Amb to T1	Expansion	16.72	157.36	0.11	0.00	16.72	0.00	0.00	15588.06	1.00	4-1
Α		TR:AMB-T1	Expansion	16.72	157.36	0.11	0.00	16.72	0.00	0.00	15588.06	1.00	4-1
Α		Max P	Ноор	66.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Α	404	GR + Max P	Sustain	62.20	0.00	0.00	30.78	31.42	29300.94	0.00	0.00	1.00	2-1
Α	A04	Amb to T1	Expansion	17.59	157.36	0.11	0.00	17.59	0.00	0.00	16400.85	1.00	4-1
А	A	TR:AMB-T1	Expansion	17.59	157.36	0.11	0.00	17.59	0.00	0.00	16400.85	1.00	4-1

Tabela 5. Naprezanja u parovodu svježe pare

2.5. Grafički prikaz rezultata provedenih proračuna na parovodu svježe pare

Na slici 3. dat je grafički prikaz rezultata provedenih proračuna na parovodu svježe pare bloka 5 u TE Kakanj.

Slika 3. Grafički prikaz maksimalnog naprezanja parovoda svježe pare

3. ZAKLJUČAK

U programu BENTLEY AutoPIPE+9 napravljen je model parovoda svježe pare. Izvršen je proračun istoga i može se konstatovati sljedeće:

- Najveće rezultirajuće deformacije uočene su na mjestu A15 N u iznosu od 511 mm, dok su najveće vrijednosti ugaone deformacije locirane na mjestu A07 u iznosu od 1,66 deg. Ove deformacije nastaju pri djelovanju opterećenja od vlastite težine parovoda i temperaturnog opterećenja od 545°C;
- Maksimalno naprezanja na parovodu svježe pare zabilježeno je na mjestu J01 (spoj parovoda i By-passa turbine) u iznosu od 201 N/mm² pri temperaturnom opterećenju od 545°C (slika 3).
- Sva ostala naprezanja u računatim tačkama proračuna su manja od gore navedene vrijednosti i kreću se u intervalu od 10 do 91,55 N/mm². Dozvoljena vrijednost naprezanja korištena u programu je 157 N/mm².

Iz svega gore navedenog može se steči zaključak da parovod svježe pare može biti u funkciji još neko vrijeme (cca 15000 pogonskih sati), s time da se obrati pažnja na dio parovoda iz proračuna koji ima maksimalno naprezanje. Isti komad parovoda svježe pare bilo bi dobro zamjeniti novim. Doprinos gore navedenog rada ogleda se u tome, da primjenom softverskog paketa BENTLEY AutoPIPE+9, te primjenom metoda konačnih elemenata, mogu se dobiti adekvatni podaci, kojih trenutno u BiH nema, za daljnju eksploataciju instaliranih parovoda u JP Elektroprivreda BiH. Takođe, primjenom dobivenih rezultata smanjit će se troškovi izrade gore navedenih proračuna, koji su do sada korišteni i rađeni u inostranstvu. Sa naučno-istraživačkog karaktera realizacije navedenog rada, urađen je adekvatan algoritam za proračun parovoda, koji će omogućiti, da dobiveni rezultati proračuna budu prihvatljivi, i aplikativni za sva instalirana postrojenja sličnih dimenzija i kapaciteta.

4. LITERATURA

- [1] Jakovljević A., Uticaj oštećenja i naponskog stanja materijala na preostali radni vek parovoda visokog pritiska, magistarska teza, Mašinski fakultet, Beograd, 2004.
- [2] M. Zrilic: The Application of Local Approach to Residual Life Assessment of Equipment Components at Elevated Temp. Ph.D. Thesis (in Serbian) Fac. of Techn. Metall. Belgrade, 2004
- [3] Lars Fuglsang Andersen:Residual streses and Deformations in Steel Structures, PhD. thesis, Tecnical University of Denmark, 2000.
- [4] M. Berković: Determination of stress intenisity factors using finite element method, Integritet i vek konstrukcija (2/2001), 2001, str. 57-62, Beograd,
- [5] R.H. Gallagher: A review of finite element techniques in fracture mechanics, MARC Europe Seminar, Portorož, 1979.
- [6] W.S. Blackburn: Calculation of stress intensity factors at crack tips using special finite elements, The Mathematics of Finite Elements and Applications, Academic Press, 1973
- [7] Maneski T: Kompjutersko modeliranje i proračun struktura, Monografija, Mašinski fakultet, Beograd, 1998.
- [8] Dušan Milanović, Vera Šijački Žeravčić, A.V. Voljdemarov, Gordana Bakić, Miloš Đukić, Marija Matić: Pouzdanost termoenergetskih postrojenja posle dugotrajne eksploatacije, Elektroprivreda, Časopis zajednice Jugoslavenske elektroprivrede, str. 45-53, Beograd, 2002.
- [9] prEN 13445-3:2002:Unfired Pressure Vessels, European Committee for Standardization, Brussels.
- [10] ASME Boiler and Pressure Vessel Code Section VIII (1988.): Rules for Construction of Pressure Vessels, Division 2 – Alternative Rules.